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Abstract. Solution of difficult groundwater flow and
transport problems is made easier when the groundwater
equipotentials are coupled with streamlines. This approach,
embedded in a new formulation of the Complex Variable
Boundary Element Method (CVBEM), is shown to readily
solve groundwater flow and transport problems. Examples of
this method are presented for recalcitrant problems related to
flow under a dam, dipole transport, and regional groundwater
flow. The presented technique solves the two-dimensional
Laplace equation wusing Ordinary Least Squares
(CVBEM/OLS). This strategy is used to determine unknown
boundary values at nodes along the exterior boundary. Once
all boundary values are known, the problem is reformulated in
the complex potential plane to solve for the complex position
of specified potential-streamline pairs so that the flownet can
be constructed. This strategy greatly simplifies the determina-
tion of groundwater flownets, capture zones, solute-front
migration, and travel times.

INTRODUCTION

Flownets are a traditional and valuable tool that aid in the
analysis and interpretation of groundwater flow and contami-
nant transport problems. Flownets help to visualize the
flowfield, to delineate the capture zone or influence areas of
discharge and recharge, to design groundwater development
and remediation measures, and to evaluate the effects of
different boundary conditions during site characterization. For
transport problems, flowpaths and travel times found by
particle tracking are used to identify outflow locations and the
arrival time of contaminants, as well as to show the advance of
a contaminant front within the flow domain.

Usual Methods for Constructing a Flownet

Two methods are usually employed to construct a flownet or
flowpath. One method utilizes potential and stream functions
to identify the locations of the equipotential and streamlines.
Because most numerical procedures provide only the values of
the potential and stream function at a limited number of
locations, interpolation using a contouring algorithm is usually
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necessary. -Interpolation procedures can introduce additional
errors into the flownet geometry delineation.

The second method utilizes knowledge of the velocity field,
which is usually deduced from the results of flow modeling.
Therefore, the accuracy of the flow paths depends on both the
flow model and the interpolation scheme used to construct the
velocity field. Apart from the accuracy of the velocity field, the
accuracy of calculated travel times is also related to the step
size associated with the time-stepping scheme. Fine discre-
tization in both space and time are major constraints to the
application of these methods to travel time calculations.

For conditions of steady flow through homogeneous media,
traditional real-variable boundary-element methods (RVBEM)
and complex-variable boundary-element methods (CVBEM)
relax the requirement for discretization of the flow domain.
The boundary-element methods may still be appropriate for
contaminant transport problems involving long time scales, in
which case short-term transients are unimportant and the
steady flow assumption is acceptable (Frind and Matanga,
1985). Nonetheless, these methods need to perform either a
time-stepping or contour interpolation when plotting flownets
and calculating travel times.

Alternate Methods

In this paper we first describe a method for solving flow
problems within the physical plane (i.e., solving for unknown
boundary potentials) using Ordinary Least Squares (OLS).
OLS is used here because it improves the accuracy of the
CVBEM solution in the physical plane when the resulting
system of algebraic equations is overdetermined. OLS yields
a matrix that is symmetric, positive-definite, and diagonally-
dominant, which simplifies inversion and yields a better
estimate of unknown boundary data. Once the unknown
boundary data have been estimated, CVBEM allows the
potential and velocities to be calculated at internal points with
excellent accuracy and continuity. This capability lays the
foundation upon which contaminant transport problems can be
addressed.

Instead of finding the value of the complex potential, w = ¢
+ iy, for given complex positions, z = x + iy, in the physical
plane, our method reverses this procedure. We directly



physical plane, our method reverses this procedure. We
directly identify the locations of flownet intersections for any
streamline or equipotential increment. This approach also
allows us to calculate travel times more efficiently and
accurately. Travel times are calculated, not by time-step-
ping, but by using an increment in potential.

CVBEM FORMULATION

Two-dimensional, steady, groundwater flow in a homo-
geneous, isotropic medium is governed by the Laplace
equation:
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The principal unknown, u, can be either potential, ¢,
(defined here as the negative product of the total head with
the hydraulic conductivity), or stream function, . The
boundary value problem is usually solved by numerical
methods for arbitrary boundary geometries and for appropri-
ate boundary conditions.

The complex variable boundary element method
(CVBEM) provides a method for simultaneously obtaining
the solution of the potential and stream function (Hunt and
Isaacs, 1981; Hromadka and Lai, 1987). Most CVBEMs
employ the Cauchy Integral using complex variables:
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where wfz]=¢+iy is the complex potential, z=x+iy is the
complex position, i is the imaginary unit, I' is the boundary
of the domain, and 6 equals either 27 for a point lying within
the domain, or § equals the inner angle formed by tangential
lines before and after the point for points along the boundary.

This differential equation is converted to a boundary
integral equation, and is further reduced to an algebraic
system of equations after approximation and discretization
(Yu and Rasmussen, pending publication):

NEM-1)

Y la-ibgl w, =0
k-1

(€))

which can be written in matrix form as:
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where
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It is interesting to note that the coefficients a; and by in
Equations (4) and (5) sum to zero in each row, as seen by
setting ¢ equal to a constant and setting ¥ equal to zero.
While the coefficients are also dependent on the form of the
shape function selected, and the boundary nodal positions, the
coefficients are strikingly similar.

If the boundary geometry is approximated using straight-
line segments and linear shape functions are used, the
complex potential along each segment can be expressed as:

wfz] =
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where the subscripts k and k+1 are the numberings of the
end-nodes in the element, w, and w,,, are the corresponding
nodal values of the complex potential, and z, and z,, are the
corresponding complex nodal positions.

OLS FORMULATION

The algebraic system of 2n equations with 2n variables
represented above is homogeneous. Also, each equation
generally contains 2n variables prior to insertion of boundary
conditions. In order to make the solution values of ¢ and
uniquely determined, one value of ¢ and ¥ must be explicitly
specified. For a well-posed problem, additional values of ¢
or ¥ must be specified along the boundary either directly or
indirectly by linking nodal values to neighboring nodes. As
a result, the resulting number of unknowns (i.e., m) will
always be less than the number of equations (2n). Therefore,
the system becomes algebraically overdetermined. Our
method for solving the overdetermined matrix equations uses
the ordinary least squares (OLS) method to determine the
"most probable" solution (Lanczos, 1961). The OLS
formulation is implemented by first assigning boundary
conditions to form the system of equations:
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where the subscripts # and k refer to unknown and known
boundary data, respectively. The matrix C, has the dimen-
sion (2n x m), where m < 2n. The unknown boundary data,
w,, are estimated using (Yu and Rasmussen, pending):

c
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This approach provides the best estimate of the unknown



boundary data in the sense of minimizing the global approxi-
mation error when an overdetermined set of matrix equations
is present, which is usually the case. It should be noted that
the matrix, C,7 C,, with dimensions of (m*m), is now
symmetric, positive definite and diagonally dominant, which
is extremely advantageous when solving.

FLOWNET SOLUTION STRATEGY

We note that a complex potential problem in the physical
plane, wfz], can be transformed into a complex position
problem in the complex potential plane, z/w/. The expres-
sions in the physical plane are:

¢ = o[x,y] ¥ = y[xy] ©
It is relatively straightforward to show:
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From these equations it follows that:
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These equations are, respectively, the equivalent Cauchy-
Riemann conditions and governing equations in the complex
potential plane. A fundamental difficulty associated with
solving these latter equations in the complex potential plane
is the definition of complex position boundary conditions.
This problem is bypassed by solving for unknown potentials
in the physical plane using the OLS solution method de-
scribed previously. It is advantageous to use linear interpola-
tors for both the complex position and complex potential
problems because the mutual linearity of wyz] with z/w] is
assured. This formulation allows the use of the same
discretization equation by interchanging w with z. This
allows us to find the complex position for a specified
complex potential within a flow domain, which is especially
useful for finding the unknown position of a boundary node,
such as along a free surface (Liggett and Liu, 1983).
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EXAMPLES

As an example of the use of this strategy, Figure 1
presents the flownet solution for groundwater flow beneath a
dam containing a sheet pile (Fetter, 1988). Due to symme-
try, only the right half of the flow problem is presented. A
prescribed head is assigned on the upstream and downstream
surfaces. No-flow boundaries are prescribed along the right
and bottom sides, and along the dam foundation.
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Figure 1. Flow of water under a dam with a sheet pile.

The dipole problem can be used to demonstrate a source
and a sink, each with a unit strength (Figure 2). The source
and sink are separated by a distance of two units in no
ambient flow. One reason for choosing such an example is
the availability of an exact analytical solution for the travel
time (Muskat, 1946). For Dupuit flow conditions, we use
the discharge potential and the discharge streamline function
to replace the potential and stream functions, respectively
(Strack, 1989).
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Figure 2. Dipole streamlines and solute fronts.



Another demonstration of the strategy is a regional flow
problem (Té6th, 1963). Figure 3 presents a regional flow
problem using an elevation view of the flownet in the
physical plane (a), and the calculated boundary potentials in
the complex potential plane (b). The upper surface of the
complex position consists of a specified head equal to the
elevation, while the remaining surfaces are noflow bound-
aries. The single-valued property of x and y in the complex
potential plane is lost in the area of the intervening valley
because of folding. It should be noted that subdomains
meeting the one-to-one correspondence must be located
before finding the position of the specified potential in this
part of the domain.
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Figure 3. Regional ground-water flow.
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To resolve the problem of overlapping positions in the
complex potential plane, we can subdivide the physical flow
domain into separate flow subdomains using a dividing
streamline to maintain the single-valued property of x and y
in their images, respectively. The position of the streamline
along the flow divide is found by starting at the location on
the boundary where it originates or terminates. We employ
a first-order approximation of the potential increase, A¢ and
Ay, along the divide. One advantage of this approach is that
errors in the position of successive points along the divide are
never accumulated. Also, the procedure can proceed either
upstream or downstream. When the dividing streamline
includes a stagnation point, care must be taken to initiate the
procedure slightly away from the point to avoid numerical
difficulties. The method can be used for locating an equi-
potential line.
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